Abstract
Barriers to compare opposed or alternative scientific theories exist, based on diverse premises. One is the concept of incommensurability, the idea suggesting that different paradigms or theories cannot be contrasted since they do not share common tenets. This paper proposes the use of nested models for testing the efficacy of isolated disciplinary explanations of psychological and social problems versus the power of interdisciplinary explanations. According to this approach, such nested models would include alternative disciplinary theories competing against each other and against an inclusive model that combines these unidisciplinary explanations. This situation is illustrated with an empirical study using a questionnaire on predictors of precautionary behaviors against COVID-19. Data was analyzed using structural equations, considering a psychological and a health-science perspective, and integrated into an interdisciplinary model. Results from this study showed that the best model was the interdisciplinary model, thus providing some evidence for the use of nested models as a method to integrate different disciplines. The advantages of this approach are discussed in the face of the growing, complex, and serious problems that humanity is nowadays experiencing.
References
Bentler, P. M. & Bonett, D. G. (1980). Significance Tests and Goodness of Fit in the Analysis of Covariance Structures. Psychological Bulletin, 88(3), 588-606. http://dx.doi.org/10.1037/0033-2909.88.3.588
Bentler, P. M. (2007). On Tests and Indices for Evaluating Structural Models. Personality and Individual Differences, 42, 825–829. https://doi.org/10.1016/j.paid.2006.09.024
Bhaskar, R., Danermark, B., & Price, L. (2018). Interdisciplinarity and Wellbeing: A Critical Realist General Theory of Interdisciplinarity. Routledge. https://openjournals.ljmu.ac.uk/prism/article/download/311/286/1472
Bontempi, E., Vergalli, S., & Squazzoni, F. (2020). Understanding COVID-19 Diffusion Requires An Interdisciplinary, Multi-Dimensional Approach. Environmental Research, 188, 109814. https://doi.org/10.1016%2Fj.envres.2020.109814
Buanes, A. & Jentoft, S. (2009). Building Bridges: Institutional Perspectives on Interdisciplinarity. Futures, 41(7), 446-454. https://doi.org/10.1016/j.futures.2009.01.010
Briggs, S. R. & Cheek, J. M. (1986). The Role of Factor Analysis in the Development and Evaluation of Personality Scales. Journal of Personality, 54, 106–148. https://doi.org/10.1111/j.1467-6494.1986.tb00391.x
Chang, H. (2013). Incommensurability: Revisiting the chemical revolution. In V. Kindi & T. Arabatzis (Eds), Kuhn's The Structure of Scientific Revolutions Revisited (pp. 163-186). Routledge.
Clark, L. A. & Watson, D. (1995). Constructing validity: basic issues in objective scale development. Psychological Assessment, 7, 309–319. https://www2.psych.ubc.ca/~schaller/528Readings/ClarkWatson2019.pdf
Corr, P. J. & Cooper, A. J. (2016). The Reinforcement Sensitivity Theory of Personality Questionnaire (RST-PQ): Development and Validation. Psychological Assessment, 28, 1427–1440. https://doi.org/10.1017/SJP.2022.5
Corral, V. & Figueredo, A.J. (1999). Convergent and Divergent Validity of Three Measures of Conservation Behavior: The Multitrait-Multimethod Approach. Environment & Behavior, 31, 805-820. https://doi.org/10.1177/00139169921972353
Corral-Verdugo, V., Pato, C. & Torres-Soto, N. (2021). Testing a Tridimensional Model of Sustainable Behavior: Self-Care, Caring for Others, and Caring for the Planet. Environment, Development and Sustainability, 23(9), 12867-12882. https://link.springer.com/article/10.1007/s10668-020-01189-9
Crede, M. & Harms, P. (2019). Questionable Research Practices when Using Confirmatory Factor Analysis. Journal of Managerial Psychology, 34(1), 18-30. https://doi.org/10.1108/JMP-06-2018-0272
de Jong, P. F. (1999). Hierarchical Regression Analysis in Structural Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 6(2), 198-211. https://core.ac.uk/download/pdf/15470845.pdf
Eid, M. E. & Diener, E. E. (2006). Handbook of Multimethod Measurement in Psychology. American Psychological Association.
Espinoza-Romero, J., Velardez Soto, S. N., Corral-Frias, N. S. & Frías-Armenta, M. (2019). Validación del Cuestionario de Personalidad de la Teoría de la Sensibilidad al Refuerzo en Estudiantes. Paper presented at Congreso Mexicano de Psicología. Guadalajara, Mexico.
Frías, M., Corral-Frías, N., Corral, V., & Lucas, M.Y. (2021). Psychological Predictors of Precautionary Behaviors in Response to COVID-19: A Structural Model. Frontiers in Psychology, 12, 559289. https://doi.org/10.3389/fpsyg.2021.559289
Glänzel, W., Beck, R., Milzow, K., Slipersæter, S., Tóth, G., Kolodziejski, M., & Chi, P.S. (2016), Data Collection and Use in Research Funding and Performing Organizations. General Outlines and First Results of a Project Launched by Science Europe. Scientometrics, 106(2), 825–835. https://ideas.repec.org/a/spr/scient/v106y2016i2d10.1007_s11192-015-1815-z.html
Glänzel, W. & Debackere, K. (2022). Various Aspects of Interdisciplinarity in Research and How to Quantify and Measure Those. Scientometrics, 127(9), 5551-5569. https://lirias.kuleuven.be/retrieve/634664
Gevonden, M. (2007). Researching the Self. The Need for Interdisciplinarity. In E. Grunewald & E. Frankenhuis (Eds.), Researching the Self. Interdisciplinary Perspectives. Cambridge Scholars Publishing.
Godfrey, P. & Torres, D. (2016). Systemic Crises of Global Climate Change: Intersections of Race, Class and Gender. Routledge.
Grabs, J., Langen, N., Maschkowski, G., & Schäpke, N. (2016). Understanding Role Models for Change: A Multilevel Analysis of Success Factors of Grassroots Initiatives for Sustainable Consumption. Journal of Cleaner Production, 134, 98-111. https://doi.org/10.1016/j.jclepro.2015.10.061
Griffin, D. R. (2015). Unpredecented: Can Civilization Survive the CO2 Crisis? Clarity Press.
Hair Jr, J. F., Anderson, R. E., Tatham, R. L., & William, C. (1995). Multivariate Data Analysis with Readings. Prentice Hall.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing. New Challenges to International Marketing (pp. 277–319). Emerald Group Publishing Limited.
Klein, J. T. (1990). Interdisciplinarity: History, theory, and practice. Wayne State University Press.
Klein, J. T. (2000). A Conceptual Vocabulary of Interdisciplinary Science. In: P. Weingart & N. Stehr (Eds.), Practising Interdisciplinarity (pp. 3–24). University of Toronto Press.
Kuhn, T. (1962). The Structure of Scientific Revolutions. 2nd ed. University of Chicago Press.
Lakatos, I. (1980). The Methodology of Scientific Research Programmes: Volume 1: Philosophical Papers (Vol. 1). Cambridge University Press.
Loewen, P. J., Lyle, G., & Nachshen, J. S. (2009). An Eight-Item Form of the Empathy Quotient (EQ) and an Application to Charitable giving. Université de Montréal. http://individual.utoronto.ca/loewen/Research_files/Eight%20Question%20ES_final.pdf
McMurtry, A. (2009). Knowers and Phenomena: Two Different Approaches to Interdisciplinarity and Interprofessionalism. Issues in Interdisciplinary Studies, 27, 1-16. http://hdl.handle.net/10323/4445
Moradian, N., Moallemian, M., Delavari, F., Sedikides, C., Camargo Jr, C. A., Torres, P. J., ... &
Rezaei, N. (2021). Interdisciplinary Approaches to COVID-19. In N. Rezaei (Ed.), Coronavirus Disease-COVID-19 (pp. 923-936). Springer International Publishing.
National Academy of Sciences (2005). Facilitating Interdisciplinary Research. The National Academies Press.
Nihoul, J. C. (2009). Nested Interdisciplinary Three-Dimensional Models of the Marine System. In J. C. Nihoul (Ed.),
Oceanography–Vol. III. University of Liege.
Politi, V. (2017). Specialisation, Interdisciplinarity, and Incommensurability. International Studies in the Philosophy of Science, 31(3), 301-317. https://philarchive.org/rec/POLSIA-2
Torka, A.-K., Mazei, J., & Hüffmeier, J. (2021). Together, Everyone Achieves More—or, Less? An Interdisciplinary Meta-Analysis on Effort Gains and Losses in Teams. Psychological Bulletin, 147(5), 504–534. https://doi.org/10.1037/bul0000251
Wakabayashi, A., Baron-Cohen, S., Wheelwright, S., Goldenfeld, N., Delaney, J., Fine, D., Smith, R., & Weil, L. (2006). Development of Short Forms of the Empathy Quotient (EQ-Short) and the Systemizing Quotient (SQ-Short). Personality and Individual Differences, 41, 929–940. https://doi.org/10.1016/j.paid.2006.03.017
Wang, J., Thijs, B., & Glänzel, W. (2015). Interdisciplinarity and Impact: Distinct Effects of Variety, Balance and Disparity. Plos One, 10(5): e0127298. https://doi.org/10.1371%2Fjournal.pone.0127298
Werner, C. & Schermelleh-Engel, K. (2010). Introduction to Structural Equation Modeling with LISREL. Goethe University. https://www.psychologie.uzh.ch/dam/jcr:ffffffff-b371-2797-0000-00000fda8f29/chisquare_diff_en.pdf
Yanitsky, O. N. (2020). Prospects of the Interdisciplinary & Systemic Approaches. Creative Education, 11(06), 913-925. https://doi.org/10.4236/ce.2020.116066
Zaman, G. & Goschin, Z. (2010). Multidisciplinarity, Interdisciplinarity and Transdisciplinarity: Theoretical Approaches and Implications for the Strategy of Post-Crisis Sustainable Development. Theoretical & Applied Economics, 17(12), 5-20. http://store.ectap.ro/articole/532.pdf
Zhang, L., Rousseau, R., & Glänzel, W. (2016), Diversity of References As an Indicator for Interdisciplinarity of Journals: Taking Similarity Between Subject Fields into Account. JASIS, 67(5), 1257–1265. http://dx.doi.org/10.1002/asi.23487
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023